Improving Pipeline for the Development of Influenza Antivirals

Michael W Wathen, Ph.D.
Chief, Antiviral Advanced Development
Influenza Division
BARDA
BARDA Influenza Antiviral Program Strategy Overview

National Strategy
- Stockpile
 - 81M Treatment Courses

Issues
- Resistance
- SNS/State Stockpiles
- Gaps for Special Populations
- New Antivirals
- Replenishment Costs

BARDA Strategy
- IAWG Draft Policy Recommendations
- Extended Expiration Dating

Accelerated Development To Fill Gaps
- Hospitalized Pediatrics
- Prophylaxis
- Resistance
- Efficacy
- Treatment Window

BioCryst Peramivir
- Biota Laninamivir

Novel MOA Antivirals
- Broad-Spectrum Combination Therapies
Issues for Influenza Antivirals

• Current therapies have narrow treatment window
 – Treatment within 48h of symptom onset for neuraminidase inhibitors
 – Can treatment window be expanded with novel antivirals having different mechanisms of action?

• Constant threat of resistance
 – Value of M-2 blockers minimized by resistance
 – Heavy reliance on neuraminidase inhibitors
 – Few combination therapies unavailable

• Limited options in U.S. for special populations
 – No IV formulations approved for patients on ventilators
 – No drugs approved for severely ill, hospitalized patients
 – Limited treatment options for pediatric patients
BARDA Influenza Antiviral Program
Advanced Development Strategy

2005 National Strategy for Pandemic Influenza
• Accelerate development, evaluation, approval and U.S.-based production of new influenza antiviral drugs

Treatment Gap Issues
• Special populations (pediatrics, severely ill hospitalized)

Existing BARDA Advanced Development Projects
• Fill critical unmet medical needs by expanding the utility of neuraminidase inhibitors

• Peramivir
 • $235M contract with BioCryst awarded in 2007
 • Development of IV peramivir in hospitalized patients
 • EUA designated by FDA during 2009 pandemic
 • First unapproved drug authorized for use under an EUA
 • Worldwide clinical program for licensure in U.S.

• Laninamivir
 • $231M contract with Biota awarded in 2011
 • Development of inhaled laninamivir in outpatient setting
 • Single-dose treatment course
Novel Influenza Antiviral Targets in Clinical Development

- **Licensed Drugs**
 - Adamantanes
 - Neuraminidase Inhibitors

- **Other Viral Targets in Clinical Development**
 - Fusion
 - Polymerase
 - Anti-sense
 - ADCC Mab

- **Host Targets in Clinical Development**
 - Inhibit host genes essential for virus life cycle
 - Immunomodulators
 - Up-regulate innate immune response
 - Down-regulate cytokine storm
Host Genes Essential to Virus Life Cycle

 — RNAi screens to identify host pathways involved in influenza virus replication
 — Identified 50 “druggable” genes from 7 functional categories
 • Ribosome
 • COPI vesicle
 • Proton-transporting V-type
 • ATPase complex
 • Spliceosome
 • Nuclear pore/envelope
 • Kinase/signaling

 — Review of cellular targets with drugs that inhibit influenza replication
 — Identified 57 drugs against 36 cellular targets
 • Phase I studies available for 15 of the drugs
2012 Influenza Antiviral Landscape

<table>
<thead>
<tr>
<th>Class</th>
<th>Pre Clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Market Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamantanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Generic Rimantadine</td>
</tr>
<tr>
<td>NA Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Generic Amantadine</td>
</tr>
<tr>
<td>Valleant</td>
<td>TalMed</td>
<td>Biota</td>
<td>GSK Zanamivir</td>
<td>Roche Osel tamivir</td>
<td></td>
</tr>
<tr>
<td>Ribavirin Pol Inhibitor</td>
<td>Tamiphosphor</td>
<td>Lanamivir</td>
<td>Roche Oseltamivir</td>
<td>GSK Zanamivir</td>
<td></td>
</tr>
<tr>
<td>Other Viral Targets</td>
<td>CellTrion CT120 Fusion Inhibitor Mab</td>
<td>BioCryst Peramivir</td>
<td>Daiichi Sankyo Inavir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea Lane</td>
<td>Sea Lane A06 Fusion inhibitor HA Mab</td>
<td>Autoimmune Technologies Fluirvitide-3 Peptide Entry Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crucell</td>
<td>Crucell CR6261/8020 HA Mab</td>
<td>AviBioPharma AVI-7100 PMO Anti-sense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valleant</td>
<td>Theracine Mab-m2e</td>
<td>Admas TCAD Combo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry Inhibitor</td>
<td>Vertex VX-787</td>
<td>Toyama Favipiravir (T-705) Pol Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum</td>
<td>AviBioPharma AVI-7100 PMO Anti-sense</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAi</td>
<td>Theracine Mab-m2e</td>
<td>Admas TCAD Combo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnylam</td>
<td>AviBioPharma AVI-7100 PMO Anti-sense</td>
<td>Toyama Favipiravir (T-705) Pol Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visterra</td>
<td>Theracine Mab-m2e</td>
<td>Admas TCAD Combo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix inhibitor</td>
<td>Vertex VX-787</td>
<td>Toyama Favipiravir (T-705) Pol Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery Labs</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfaxin</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immuno-Regen</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurokinin-1</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gemmus</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP1002</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCPR Agonist</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Genetics</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mab host protein</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeon</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>salicylic acid Nf-κB Inhibitor</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NexBio</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fludase Sialidase</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romark</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitazoxanide Immuno-modulator</td>
<td>Pulmatrix PUR003 ICALM</td>
<td>Theraclone Mab-m2e</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classifications:
- **Other**
- **Inhaled**
- **IV**
- **Oral**
2005 National Strategy for Pandemic Influenza

- Accelerate development, evaluation, approval and U.S.-based production of new influenza antiviral drugs

Treatment Gap Issues

- Resistance to current therapies
- Limited options for combination therapy
- Limited efficacy and treatment window

Future Advanced Development Projects

- Focus on new influenza therapeutics with novel mechanism of action
 - No issue of cross-resistance with current influenza antivirals
 - Potential for combination therapy to improve efficacy and reduce risk of resistance
 - First award to NexBio in Sept 2012
- Focus on novel influenza therapeutics with the potential for broad spectrum activity
 - Target viral functions commonly utilized by many viruses
 - Target host functions that modulate viral infections
 - Specific host function needed for viral replication (NexBio)
 - Immunomodulatory agents
Current Broad Agency Announcement (BAA)
Area of Interest #4: Influenza Therapeutics

• Smaller, Targeted Contracts for Advanced Development
 — IND for Influenza indication
 — Phase I trial completed

• Antiviral Therapeutics for Treatment of Influenza Infection
 — Therapeutics with novel mechanism of action
 — Development of combination therapeutics
 — Alternative formulations for special populations
 — Identification and validation of surrogate endpoints

• Multi-Purpose, Broad-Spectrum Antiviral Therapeutics for Treatment of Influenza Virus Infection
 — Viral targets with broad-spectrum potential
 — Host targets that reduce viral replication and ameliorate symptoms
 — Combination therapies with an influenza antiviral and a host modulating therapeutic
Questions?