Cellular Therapies for Use in Public Health Emergencies

Traci Heath Mondoro, Ph.D.
Transfusion Medicine and Cellular Therapeutics Branch
Division of Blood Diseases and Resources
National Heart, Lung, and Blood Institute, NIH
Fostering Research through Collaborations with Other Offices, Agencies, and NIH Institutes

- DHHS, Office of the Assistant Secretary for Health, Office of HIV/AIDS and Infectious Disease Policy
- FDA
- DoD
- HHS Office of the Secretary for Preparedness and Response (ASPR), Biomedical Advanced Research Development Authority (BARDA)
- NIH Institutes – NIAID, NICHD, NIA, NIDCR, NCI
Cell Therapy: An Intersecting Interest
Hematopoetic System

- **0.1-1 Gy**: Slight decrease blood count
- **1-3.5 Gy**: Mild to severe bone marrow damage, 1 hour- 48 hours
- **3.5-7.5 Gy**: Pancytopenia, 1 hour- 48 hours
- **7.5-10 Gy**: Bone marrow damage, <1 hour- 48 hours
- **>10 Gy**: Severe bone marrow damage, minutes- 48 hours

Gastro-intestinal (GI)

- **3.5-7.5 Gy**: Mild to moderate GI damage, 1 hour- 48 hours
- **7.5-10 Gy**: Moderate to severe GI damage, <1 hour- 48 hours
- **>10 Gy**: Severe GI damage, minutes- 48 hours

Cutaneous Radiation Injury

- **>2 Gy**

Cardiovascular

- **>10 Gy**: Minutes- 48 hours

Neurological

- **>10 Gy Neurological damage 1-10 days**
Hematopoietic Stem Cell Transplantation and Chernobyl: Granulocytes

Time to Granulocyte Recovery: Treatment vs Control in Grade 2 or 3 ARS

- 500 x 10^3/ul
- 1000 x 10^3/ul
- 2000 x 10^3/ul
Hematopoietic Stem Cell Transplantation and Chernobyl: Platelets

Time to Platelet Recovery: Treatment vs Control in Grade 2 or 3 ARS

- 30 x 10^3/ul
- 50 x 10^3/ul

% Recovery vs Time (days)
Establishing a Strategic Research Agenda

- Need to continuously monitor and identify scientific priorities
- Know what research and resources are currently supported
- Identify and rectify gaps in research support and funding mechanisms, and provide funding opportunities
- Monitor progress using established metrics
NHLBI-supported Programs: Bench to Bedside

- Basic
- Preclinical
- FDA
- Phase I
- Phase II
- Phase III
- Phase IV

Contracts: T-Cell & COBLT

P01's

SCCT

Resources: PACT, GTRP, TRND, SMARTT, R24 grants

U10s: BMT CTN

U24: CIBMTR

R21's / R01's
Timeline Post-Detonation

0 - 72 hrs
- Administer fluids
- Secure airway
- Manage pain
- Provide early nutrition
- Prevent wound infection

72 hrs - Beyond
- Conclusive burn wound care
- Functional recovery
- Provide fluids & nutrition

GOALS

Burn Wound Treatments
1. Anti-microbial barrier burn bandages

Key Complementary Products
A. Oral rehydration therapy sachets
B. Point-of-care airway management
C. Analgesics (oral/intramuscular)
D. Nutritional supplies (oral)

Phase I Products
Field Care

Phase II Products
Definitive Care

Burn Wound Treatments
2. Autologous-based treatment products
3. Natural biological products
4. Manufactured biological products
5. Anti-microbial burn dressings

Key Complementary Products
E. Burn care surgical equipment
F. Rehydration fluids (oral/intravenous)
G. Nutritional supplies (oral/nasogastric)
H. Pharmaceuticals (analgesics, sedatives, systemic antibiotics)
Priorities for Cellular Therapies

- Support basic research needed for future cellular therapies – large portion of TMCTB’s grant portfolio.

- Support preclinical studies, including scale-up and validation of new cellular products for clinical trials (i.e., ex vivo-expanded umbilical cord blood, NK cells and T regulatory cells) using
 - New funding opportunities and review criteria appropriate for preclinical research, i.e. do not require hypothesis-driven research
 - Resource Programs such as the Production Assistance for Cellular Therapies (PACT) program
Priorities for Cellular Therapies

- Support early-phase clinical studies
 - Constitute specialized review panels with the appropriate expertise for these studies, including regulatory, statistical, and cell-manufacturing
 - Foster novel early-phase clinical trials
 - when possible, try to use an existing infrastructure for cell therapy trials (such as the BMT CTN) to hasten the transition into definitive trials

- Complete high priority phase II and III clinical trials in hematopoietic stem cell transplantation
 - 2007 State of the Science Symposium in Blood and Marrow Transplantation identified some of the high-priority trials.
PACT’s Role in Supporting Pre-Clinical Work and Phase I Clinical Trials

Pre-clinical

- Discovery; Proof of concept; cell Product potential; therapeutic mechanism and pathway; cell and disease interaction

Phase I

- IND Filing
- Dose escalation; safety and toxicity studies; small trial size

Phase II

Phase III

Manufacturing
- Scale up
- Validation
- Release Criteria
- CMC

Animal Studies
- GLP/GMP product
- Efficacy
- Toxicity

Manufacturing

- Scale up
- Validation
- Release Criteria
- CMC

Animal Studies

- GLP/GMP product
- Efficacy
- Toxicity

IND Filing

Dose escalation; safety and toxicity studies; small trial size

Efficacy and safety studies; full product characterization; potency; scale up; full GMP
Cell Product Manufacturing Capabilities

<table>
<thead>
<tr>
<th>PROGENITOR CELLS</th>
<th>CELL DEPLETION/CELL ENRICHMENT (BM/PB/UCB)</th>
<th>DENDRITIC CELLS</th>
<th>LYMPHOCYTES</th>
</tr>
</thead>
</table>
| - Corneal progenitor cells
- HPC
- Hepatic progenitor cells
- hESC
- IPS
- Neural progenitor cells
- Mesenchymal stem cells | - CD3 depletion
- CD34 selection
- CD133 selection
- CD34+/CD3-
- CD56 selection
- Counterflow elutriation | - Adenovirally transduced
- Apoptotic tumor cell pulsed
- Peptide pulsed
- Transfected
- Tumor lysate pulsed
- Tumor-dendritic cell hybrids | - Peripheral blood-derived lymphocytes

 - Lymphocyte activated killer cells

 - Activated NK cells

 - Invariant NKT cells

 - CD8+/CD4+ T cells

 - CD4+/CD25+ T regulatory cells

 - CTLs (TGFβ, chimeric antigen receptors) |

<table>
<thead>
<tr>
<th>LYMPHOCYTES</th>
<th>LYMPHOCYTES</th>
<th>ANTIGEN PRESENTING CELLS</th>
<th>DONOR LEUKOCYTES</th>
</tr>
</thead>
</table>
| - Umbilical cord blood-derived lymphocytes

 - CD4+/CD25+ T regulatory cells | - EBV-transformed B cell lines (LCLs)

 - LCLs +/- genetic modification-intermediate product | - Dendritic cells

 - Leukemic cell lines

 - Monocytes | - Donor leukocyte infusion

 - Alloreactive T cell depleted (immunotoxin)

 - Thymidine kinase (suicide gene)-transduced T cells |

<table>
<thead>
<tr>
<th>GENETICALLY MODIFIED CELLS</th>
<th>TUMOR VACCINES (translational development)</th>
<th>MASTER/WORKING CELL BANKS</th>
<th>OTHER</th>
</tr>
</thead>
</table>
| - Activated T cells
- Fibroblasts
- Cytotoxic T-lymphocytes (CTLs)
- Hematopoietic stem cells (HSC)
- Lymphoblastoid cell lines (LCLs)
- Mesenchymal stem cells (plasmid or viral vector)
- Neural stem cells
- Tumor cells
- Tumor vaccines | - CLL-directed vaccine (autologous)

 - Large multivalent immunogen vaccine (autologous)

 - Breast adenocarcinoma

 - Melanoma

 - Renal cell carcinoma

 - Neuroblastoma-directed vaccine | - Artificial antigen presenting cells (K562)

 - Fibroblasts

 - Human embryonic stem cells

 - Mesenchymal stem cells

 - NK cell lines | - Aseptic filling

 - B95-8 EBV

 - Cell culture and expansion

 - Immune monitoring

 - Cell manufacturing for large animal models

 - Potency assay development

 - Cryopreservation technologies

 - Monoclonal antibodies

 - Plasmids

 - Suspension and adherent cell banks |
40 ongoing projects

- **23 - Clinical**
 - Delivering clinical product (cardiac; GVHD; post transplant viral infections; hematological malignancies; X-linked severe combined immunodeficiency [SCID-X1])

- **17 - Translational** (pre-clinical animal studies for cardiac & lung indications; Wiskott Aldrich Syndrome; stem cells for corneal transplantation)
Specialized Centers for Cell-Based Therapy Phase II Clinical Trials

- **CHALLAH – Allo CTL’s to treat specific viral Infections after transplant**
- **LYPTAIST - Auto CTL’s to Treat Adenovirus Infection after Transplant**
- **CADUCEUS - Intracoronary Cardiosphere-Derived Stem Cells in With Ischemic Pts.**
- **POSEIDON - Transendocardial Injection of Auto- vs. Allo-MSC in Chronic Ischemic Pts.**
- **CASPALLO - Allodepleted T Cells with Inducible Caspase 9 Suicide Gene after Transplant**
- **PROMETHEUS - IM Injection of Auto-MSCs for Ischemia in CABG pts.**
- **UCBT PTH - PTH after Sequential Unrelated Cord Blood Transplant**
- **PGE2 - Reduced Intensity two Cord Transplant Using PGE2 Treated Units**

Institutions:
- Baylor
- Mass Gen
- Cedar Sinai / Miami / Hopkins
- National Heart Lung and Blood Institute
Blood and Marrow Transplant Clinical Trials Network Years 1-10

- Expansion of donor availability and alternative graft sources
 (Auto vs Allo for myeloma; BM vs PBSC unrelated donor transplants; 3 trials addressing cord blood transplantation; Haploidentical donor transplants)

- Reduction in regimen-related toxicity (BM vs PBSC unrelated donor transplants, 3 trials studying reduced intensity conditioning, Etanercept for Idiopathic Pneumonia Syndrome)

- Graft versus host disease (GvHD) (Prevention of GVHD, treatment of acute GvHD, T-cell depleted allografts)

- Improved control of malignancy (decreased recurrence) (Post-transplant maintenance for myeloma, Auto vs Allo for myeloma, Radioimmunotherapy for conditioning)

- Infections and immune reconstitution (Antifungal prophylaxis, BM vs PBSC, ancillary studies)

- Late Complications and Quality of Life
SBIR/STTR: 3-Phase Program

PHASE I
- Feasibility Study
- $150K and 6-month (SBIR) or 12-month (STTR) Award

PHASE II
- Full Research/R&D
- $1 Million for 2-year Award (SBIR/STTR)

PHASE III
- Commercialization Stage
- Use of non-SBIR/STTR Funds
Questions?

Traci Heath Mondoro
Telephone: 301-435-0065
Email: mondorot@nhlbi.nih.gov