Influenza Vaccines with Broader Strain Protection

Armen Donabedian, Ph.D.
Chief, Influenza Vaccine Development
BARDA
Influenza Vaccine Challenges

- Antigenic changes (drift and shift) represent a major challenge for current licensed vaccines
 - Annual immunization is required
 - Vaccine effectiveness is moderate in adults and less so in the elderly

- Current production processes are predominantly egg-based
 - Growth properties of human isolates in eggs (H3 isolation, yield)
 - Pandemic surge demands

- Pandemic-like candidate vaccines (H5 and H7) are poorly immunogenic in humans
 - 2 x 90 µg dose for H5N1
 - Concerns about adjuvant safety and public perceptions

- Next generation influenza vaccines are needed
National Pandemic Influenza Vaccine Development Strategy: Multi-Step & Integrated Approach

Antigen-Sparing Vaccine Technology

Universal Vaccines

Recombinant-based Vaccines

FluBIOk licensed 01/16/13

Cell-based Vaccines

Flucelvax Licensed 11/20/12

Egg-based Vaccines

H5N1 Vaccine Licensed 04/17/07

Influenza Vaccine Landscape

Pre Clinical
- **Egg-based inactivated**
 - Sanofi Pasteur
 - CSL Biotherapies
 - GSK
- **Proprietary Adjuvant**
 - VACERA
 - GPO
- **Cell-culture inactivated**
 - GSK
 - EE66
 - MedImmune
- **LAIV**
 - GPO
 - Vivaldi Biosciences
 - BioPiem
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

Phase 1
- **Egg inactivated**
 - CSL Biotherapies
 - GSK
 - MedImmune
- **Cell-culture inactivated**
 - GSK
 - EE66; H5N1
 - MedImmune
 - BioPiem
 - AVI BioPharma
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

Phase 2
- **Egg inactivated**
 - CSL Biotherapies
 - GSK
 - MedImmune
- **Cell-culture inactivated**
 - GSK
 - EE66; H5N1
 - MedImmune
 - BioPiem
 - AVI BioPharma
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

Phase 3
- **Egg inactivated**
 - CSL Biotherapies
 - GSK
 - MedImmune
- **Cell-culture inactivated**
 - GSK
 - EE66; H5N1
 - MedImmune
 - BioPiem
 - AVI BioPharma
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

Market Approval
- **Egg inactivated**
 - CSL Biotherapies
 - GSK
 - MedImmune
- **Cell-culture inactivated**
 - GSK
 - EE66; H5N1
 - MedImmune
 - BioPiem
 - AVI BioPharma
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

Seasonal Vaccine
- **Egg inactivated**
 - CSL Biotherapies
 - GSK
 - MedImmune
- **Cell-culture inactivated**
 - GSK
 - EE66; H5N1
 - MedImmune
 - BioPiem
 - AVI BioPharma
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

Pandemic Vaccine
- **Egg inactivated**
 - CSL Biotherapies
 - GSK
 - MedImmune
- **Cell-culture inactivated**
 - GSK
 - EE66; H5N1
 - MedImmune
 - BioPiem
 - AVI BioPharma
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

US License
- **Egg inactivated**
 - CSL Biotherapies
 - GSK
 - MedImmune
- **Cell-culture inactivated**
 - GSK
 - EE66; H5N1
 - MedImmune
 - BioPiem
 - AVI BioPharma
- **Recombinant (VLPs)**
 - GPO
 - Maxygen
 - ASU
 - salmonella, Oral
 - VaxGen
 - Gilead
- **Universal**
 - NYU / MSSM
 - Biond Vax
 - Dynavax
 - NIAID Nanoparticle

10SEP2013
Universal Influenza Vaccine

• Many definitions for a universal influenza vaccine
 — A single influenza vaccine that would provide “protection” against any given subtype of influenza A
 — Could be used for several influenza seasons before reformulation
 • Reduce annual “guesswork” for strain selection
 • Reduce production costs (thus vaccine costs/year round production)
 • Reduce vaccine “mismatches”
 • Reduce the potential for vaccine shortages
 • Increase the global supply of vaccine

• Could be stockpiled for epidemics/pandemics

• Surge capacity
 — Rapid scale-up, reduce production bottlenecks
HA: surface, immunogenic
Highly variable. Drift. Shift.

NA: surface, immunogenic
Variable. Drift. Shift.

M2e: surface, immunogenic??
Fairly conserved. Ab-mediated.
Protective? Reduce severity.

NP (nucleoprotein): internal
Highly conserved.
Induces CMI. Reduce severity?

HA Stalk
Highly conserved
Transiently accessible on infected cell surface
Need to engineer a vaccine to target

Matrix: internal
Highly conserved.
Induces CMI.

Adapted from: Paul Lewis, MD
Oregon State Public Health
Universal Vaccine Strategies

- Identify broadly reactive targets (HA Stalk, M2e, NP, M)
- Combination vaccines
- Vector expression system

Vaccine Design

- Broaden immune recognition
- Th1 vs Th2 responses
- Humoral and Cell-mediated

Adjuvants

Route of Admin

- Intranasal stimulation of mucosal immunity
- Intradermal delivery to target dendritic cells

Source: NIAID http://tinyurl.com/69n9lap

Advanced Development of Universal Influenza Vaccine - Points to Consider

• Manufacturability and scalability

• Novel potency release assay
 – Most regulators are accustomed to SRID or SRH

• Clinical development
 – Non HI immune response
 • Current regulatory guidelines are based on HI
 – Potential safety concern/disease enhancement
 – Mono-specific immune response/drift potential
 • Will a single amino acid change render vaccine ineffective?
 – May require large scale efficacy trials over multiple seasons or other non-traditional clinical development plans
 • Challenge studies for cross protection
Universal Flu Vaccine Program
at BARDA

• Collaborating within HHS to develop projects

• Current activities
 – Developing a Request for Information and/or sponsoring international symposium on universal influenza vaccine
 – Planning for an Acquisition Plan to support advanced development of promising programs demonstrating improved cross-reactivity and/or duration of effectiveness.
 – Foster public-private partnerships
 • BARDA Industry Day!
• Novel influenza vaccine candidates that improve key vaccine attributes
 ― dose schedule
 ― time to onset of protection
 ― induction of improved immunogenicity
 ― broader cross-protection across influenza A virus subtypes,
 ― duration of protection

• Use of approved or novel adjuvants may be a component of the advanced development program.

• Technology readiness level 6
 ― Data demonstrating statistically relevant improvements in immunogenicity/efficacy as compared to existing vaccines.