DEVELOPMENT OF MODELS OF ACUTE RADIATION SYNDROME IN GÖTTINGEN MINIPIGS

John Esker, PhD
BARDA Project Officer
October 16, 2015
Minipig H-ARS Model Development Overview

- BARDA Minipig Collaborators
- Harmonization Efforts
- Natural History for h-ARS
- Multi-Institutional Lethality Curves
- Hematopoietic and Other Biomarkers
- MCM Efficacy Testing in the Minipig Model
- Conclusions
BARDA Minipig Collaborators

- BARDA Nonclinical Studies Network established IDIQ Contracts for Animal Model Development
 - Three Minipig Task Orders were awarded in Apr-May 2012
 - Interagency Agreement signed with Armed Forces Radiological Research Institute (AFRRI) in Jan 2013

- With BARDA, these institutions make up a Minipig Consortium to develop minipig ARS models.
Harmonization Efforts

- Documentation of all parameters was critical.
- BARDA required harmonization of key parameters (sex, age, size, housing, enrichment and veterinary care, euthanasia criteria).
- Harmonized parameters were used to establish the natural history and biomarkers for the minipig H-ARS model.
- H-ARS Biomarkers were assessed for consistency across institutions. Non-H-ARS markers distributed for breadth of coverage.
Natural History for H-ARS using Göttingen Minipigs

- Radiation dose-response curve (A) for the model is predictive with an LD50/45 comparable to canine but lower than murine and NHP ARS animal models.
- Kaplan Meier plot (B) shows similar time frame of mortality H-ARS as other murine, canine, and NHP models.
- Some deaths post 30 days support the 45 day duration of minipig studies.
Parallel probit plots demonstrate general overall predictability and reproducibility of the model.

A Dose Modification Factor (DMF) of about 1.1 observed between radiation sources and supportive care paradigms (CONOPs relevant prophylactic antibiotics and fluids).
Hematopoietic Markers

- Neutrophils and platelets are significantly impacted with dose-dependent nadir around day 15, similar to other H-ARS models.
- Similar data out to 45 days was reported across all institutions with incomplete recovery to Day 45.
Biomarker Targets

- High priority biomarkers were tested in multiple labs, to assess reproducibility.

- Institutions also performed a unique set of individual biomarkers, often based on lab expertise, to broaden coverage.

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Institution</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clin Chem</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Reactive Protein (CRP)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cytokines</td>
<td></td>
<td>X</td>
<td></td>
<td>IL-6 multiplex</td>
<td>IL-6</td>
</tr>
<tr>
<td>FLT-3 Ligand</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Endotoxin</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Citrulline</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>D-dimer</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SAA (Serum Amyloid A)</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Adhesion markers</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Coagulation markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
ARS Clinical Markers

- **Endotoxin** – Low endotoxin levels observed, suggesting effectiveness of prophylactic antibiotics in this model.

- **Body weight** – Animals presented a steady weight gain for the duration of the studies.
ARS Clinical Markers

- Pathology – Moribund animals and survivors to terminal necropsy showed internal hemorrhage and injuries similar with other ARS models.

- Doses of 2.5-3 Gy were 100% lethal at 30 days, and showed significant lung collapse, effusion and cardiac injury.

- Evaluation of ARS sub-syndromes involving higher radiation exposures would require shielding of sensitive organ.
MCM Efficacy Testing in the Harmonized Minipig Model

- Testing of MCM Efficacy / Testing of the Model
- Blinded study performed at AFRRI under “GLP”
- Bilateral irradiation @ LD50, minimal supportive care
- Statistically powered to 0.7 for 30% change at $\alpha = 0.05$ using an N=24/group
- 60 day study, longer term hematopoietic recovery data.
ARS Minipig Model Conclusions

- Gottingen minipig model demonstrates reproducible, predictable dose-dependent effects for H-ARS.
- Harmonized parameters provide a robust model suitable for qualification though the US FDA Program and evaluation of potential MCMs.
- Natural history and biomarkers are evaluated by survivors and non-survivors through Day 45.
- Partial body shielding for hematopoietic support and protecting specific organs is required for other ARS sub-syndromes involving radiation levels >3 Gy.
Thank You